Two-Dimensional Viewing
Hearn & Baker Chapter 6

Slides are taken from Robert Thomsons notes.

OVERVIEW

Two dimensional viewing pipeline

The clipping window

Normalizations and viewport transformations
OpenGL 2D viewing functions

Clipping algorithms

Point, line, and fill-area clipping

Viewing Pipeline Revisited

Modeling

Transt i Viewing
% ransformations Transformations
Y M

e 3D View
Model /~—_ | M2 _ _* A
. /L VCS

Rasterization

= P —» Cllp —+| Mormalize » 2D/3D Device .
I— Scene

Projection NDCS L1 DCS
2D Image SCS

. Model coordinates to World coordinates:
Modelling transformations

Model coordinates: World coordinates:

1 circle (head), All shapes with their

2 circles (eyes), absolute coordinates and sizes.

1 line group (nose), circle(0,0,2)

1 arc (mouth), | rcircle(-.6,.8,.3) circle(.5,.8,.3)

2 arcs (ears). lines[(-.4,0),(-.5,-.3),(.5,.3),(.4,0)]
With their relative arc(-.6,0,.6,0,1.8,180,360)
coordinates and sizes arc(-2.2,.2,-2.2,-.2,.8,45,315)

arc(2.2,.2,2.2,-.2,.8,225,135)

. World coordinates to Viewing coordinates:
Viewing transformations

World coordinates Viewing coordinates:
Viewers position and view
angle. i.e. rotated/translated

©)
@ (

. Projection: 3D to 2D. Clipping depends on
viewing frame/volume. Normalization: device
independent coordinates

Viewing coordinates:

v

Device Independent Coordinates:
Invisible shapes deleted, others
reduced to visible parts.

3 arcs, 1 circle, 1 line group

>

2-D viewing transformation pipeline

Model coordinates

— Construct world coordinate scene using modeling coordinate
transformations —

World coordinates
— Convert world coordinates to viewing coordinates —

Viewing coordinates
— Transform viewing coordinates to normalised coordinates —

Normalized coordinates
— Map normalized coordinates to device coordinates —

Device Coordinates

2D Viewing
. World coordinates to Viewing coordinates

. Window to Viewport.
Window: A region of the scene selected for viewing
(also called clipping window)
Viewport: A region on display device for mapping to

window
Viewport

World Coordinates Viewing Coordinates

Graphics packages commonly allow only rectangular clipping
windows aligned with the x- and y-axes

Must implement own clipping and coordinate transformations for other
form of clipping

YWax

Clipping Window

Viewport

Yoy

A |

YVrin [~

| | | l

XWhin X hax XUpsin XV pax

World Coordinates Viewport Coordinates

Figure 6-2

A clipping window and associated viewport, specified as rectangles
aligned with the coordinate axes.

Clipping Window vs. Viewport

. The clipping window selects what we want
to see in our virtual 2D world.

. The viewport indicates where it is to be

viewed on the output device (or within the
display window)

. By default the viewport has the same

location and dimensions as the GLUT display
window you create

- But it can be modified so that only a part of
the display window is used for OpenGL display

Viewport

(clipping) window to viewport transformation

« ZooOming

— 1S successive mapping of different sized clipping
windows to the viewport
* reducing clip window : zoom in on part of scene
* increase clip window : zoom out

« Panning
— moving a fixed-size clipping window across the scene

The clipping window

MW “ ‘ ‘
MV onae
Rectangular
YW ini Window
}:Pmiﬁ
W i AW e Y min Y max
Yiiew 4
W Rotated
Window
-M'I i
ID x;m.m n!mf.'ril v PRIy Iﬁﬂ;

From world coordinates to view coordinates

World-coordinates to Viewing Coordinates

1
-} View

Y worid] Vsworid} view
.]'"[:.
yw’w
o /\
view
X - . X
X X yworid = X world VIEH

L'z'm:].-' view

>
T{_xﬂa_yﬂ) R(ﬂ)

M = R-T

we,ve

Normalization and viewport transformations

« Some graphics packages combine normalisation and
window-to-viewport transformations into a single
operation

— viewport coordinates are often given in the range 0O to 1.
* Viewport is within a unit square

— after clipping the unit square i1s mapped to the output display
device

Window to viewport transformation

Clipping Window [+

L e et . .
| e : . | Normalization

| (xrw, yw) | Viewport

: ! YVhax + 1=~~~

| | | (xv, yv) |

[

' | Ve Il '

| I S¥min e —m——m———
YW . 4+ b————————————— -

| } I I |

X Winin *Wax 0 AV min MV max I

Figure 6-7

A point (xw, yw) in a world-coordinate chipping window 15 mapped to viewport coordinates (xv, yv),
within a unit square, so that the relative positions of the two points in their respective rectangles
are the same.

Maintaining relative position of
points within the two rectangles

Coordinate transformation:Different sizes and/or
height width ratios?

/'\'\
p
__/"’Jff \\-\\
. Forany point: xy—xy W—xW,
XV —Vmin Wanax — XWpin
YV Wi YW= VW
Moae " VWain YWoax = YW

should hold.

XV—xv XW—XW W= Woin . IW— VWi

iR — min

T:-""_,;l;tlinﬂ'_]l - T-LH”” r-lt}”g_]l - Y-ltf;mlﬂ 1w;?rm o 1 1’..??”” -1.11?'”('!\. o 1 H?ffﬂ

w=xv +(xw—xw)(ﬂ’”a’* — w”””)

i min ‘ ‘
Wi = YW
— (V vm.::rx 11’;;;;‘;1)
W= VvV, + (.1"1"1" o .1'1'1"*?::1?'};) 1
IWoire = YWoin

This can also be accomplished in 2 steps:

1. Scale over the fixed point:
S(:ﬂ rmr;':' 4 -}1L}FE‘EH‘ 4 S.r o SJ')

2. Translate lower-left corner of the clipping window to
the lower-left corner of the viewport

T(Ivmr’ﬂ — X me';l'.' : .]’ "ij-_:} o .}”' Fmr'n)

Aspect ratio

* Relative proportions of objects are maintained
only if the aspect ratio of the viewport is the

same as the aspect ratio of the clipping window
— 1.e. only If the scaling factors sx and sy are the

same

— Otherwise world objects will be stretched or
contracted in x or y directions when displayed

Normalization and viewport transformations

 In other graphics packages normalisation and clipping
are applied before window-to-viewport transformation

— viewport boundaries are specified in screen coordinates
relative to the display window position

Transform Viewing Coordinates to Device Coordinates

Convert object descriptions to normalized coordinates to make the
viewing process independent of the requirements of any output device.

Clip in normalised coordinates, then transfer the scene description to a
viewport specified in screen coordinates

Clipping algorithms in this transformation sequence are now
standardised so that objects outside the boundaries x=*1, y =+1 are
detected and removed from the scene description

At the final step of the viewing transformation the objects in the viewport
are positioned within the display window

Normalization and Viewport Transformation

« World coordinate clipping window
* Normalization square: usually [-1,1]x[-1,1]
« Device coordinate viewport

.. i Normalization Screen
yw I g l_lp_pln_g_vv_l rld_OXV - (Xnorms Ynorm) 1 Square Viewport
max |r]| .| ! YVmax T r________'i
|

| ® | ® | I e |
o) | 1 F O S S W

YWpin T+ —————————————— ! i (xv, yv)
I -1 I I

xwmm xwmax xlvmlll xvmax
Figure 6-8

A point (xw yw) in a clipping window 1s mapped to a normalized coordinate
position (Xorm»> Ynorm)»> then to a screen-coordinate position (xv, yv) in

a viewport. Objects are clipped against the normalization square before

the transformation to viewport coordinates.

OpenGL clipping routines use normalised coordinates in the range
-1to +1

M

Transform from clipping window into the normalization square

-1 for xv_min and yv_min

+1 for xv_max and yv_max

2 0 W+ XW
XWmax _XWmin X\Nmax _XWmin
_ O 2 meax + mein

windownormsq ~

Transform from normalization square into viewport

-1 for xw_min and yw_min

+1 for xw_max and yw_max

vaax_XVmin 0 XVmax+XVmin
2 2

M _ 0 yVmax B yvmin yVmax + yVmin
normsgviewport ~ 2 2

Aspect ratio

* As in the previous case, relative proportions of objects
are maintained only if the aspect ratio of the viewport is
the same as the aspect ratio of the clipping window

 If the viewport is mapped to the entire area of the display
window and the size of the display window is changed,
objects may be distorted unless the aspect ratio of the
viewport is also adjusted

OpenGL 2D Viewing Functions

. OpenGL, GLU, and Furcen
GLUT provide | [Video Sercen
functions to specify i \
clipping windows, Display T
viewports, and Lol “
display windows

Viewport

Figure 6-9

A viewport at coordinate position (x; , v,)
within a display window.

Setting up a 2D Clipping-Window

. glMatrixMode (GL_PROJECTION)

. glLoadldentity (); // reset, so that new viewing
parameters are not combined
with old ones (if any)

. gluOrtho2D (xwmin, Xwmax, ywmin, ywmax);

or

. glOrtho (xwmin, xwmax, ywmin, ywmax, zwmin, zwmax);

. Objects within the clipping window are transformed to
normalized coordinates (-1,1)

Setting up a Viewport

. glViewport (xvmin, yvmin, vpWidth, vpHeight);

. All the parameters are given in integer screen

coordinates relative to the lower-left corner of the
display window.

. If we do not invoke this function, by default, a

viewport with the same size and position of the
display window is used (i.e., all of the GLUT window
is used for OpenGL display)

Creating a GLUT Display
%

. glutInitWindowPosition (xTopLeft, yTopLeft);

- the integer parameters are relative to the top-left
corner of the screen

. glutInitWindowSize (dwWidth, dwHeight);
. glutCreateWindow ("Title of Display Window");

. glutInitDisplayMode (GLUT_SINGLE | GLUT RGB)

- Specification of the buffer that will be used
. glClearColor (red, green, blue, alpha)

- Specify the background color

Multiple GLUT windows

. Multiple windows may be created within an
OpenGL program

- Need window ids to manage multiple windows
- windowID = glutCreateWindow("Window1"):
- glutDestroyWindow (windowID)

// to destroy the window

. General functions (like glutInitDisplayMode)
are applied to the current display window.
We can set the current window to a specific

window with:
- glutSetWindow (windowlID);

Other functions

. GLUT provide functions to relocate, resize,
minimize, resize to fullscreen, change
window title, hide, show, bring to front, or
send to back, select a specific cursor for the
current display window. (pages 309-311 in
the textbook)

OpenGL 2D Viewing Example

. 2 Viewports

. One triangle is displayed
in two colors and > A
orientations in 2
viewports

glutInitWindowSize (600, 300);

glClear (GL_COLOR_BUFFER_BIT);
glColor3f(0.0, 0.0, 1.0);
drawCenteredTriangle();

glColor3f(1.0, 0.0, 0.0);
glViewport(300, 0, 300, 300);
glRotatef(90.0, 0.0, 0.0, 1.0);
drawCenteredTriangle();

Clipping

« Remove portion of output primitives outside
clipping window

« Two approaches
— Clip during scan conversion: check each pixel against
clip limits
— Clip analytically, then scan-convert the modified
primitives

Clipping

« Apart from clipping to the view volume, clipping
IS a basic operation in many other algorithms
— Breaking space up into chunks
— 2D drawing and windowing
— Modelling

* May require more complex geometry than
rectangular boxes

Two-Dimensional Clipping

Point clipping — trivial
Line clipping

— Cohen-Sutherland

— Liang-Barsky

— Nicholl-Lee-Nicholl
Fill-area clipping

— Sutherland-Hodgeman
— Weller-Atherton

Text clipping

Clipping Algorithms

. Clipping: identifying the parts of the objects
that will be inside of the window.

. Everything outside the clipping window is
eliminated from the scene description (i.e.,
not scan converted) for efficiency.

. Point clipping:

XW . S XxX<xw

M HIax

Vw.{yﬂyw

- min max

Cohen-Sutherland

« Clip line against each edge of clip region in turn
— If both endpoints outside, discard line and stop
— If both endpoints in, continue to next edge (or finish)

— If one in, one out, chop line at crossing pt and
continue

Cohen-Sutherland

2

Cohen-Sutherland

« Some cases lead to early acceptance or
rejection
— If both endpoints are inside all edges
— If both endpoints are outside one edge

/

Cohen-Sutherland Line Clipping

. Based on determination of completely invisible line

segments by doing more tests before intersection tests.

. Define test bits for a point: T e
bit 1: left of the left border
bit 2: right of the right border 0001 5595 0010
bit 3: below the bottom border
bit 4: above the top border 0101 | 0100] 0110

. When bits (also called out bits) are defined for start and

end point of the line segment, a single bitwise operation
defines the visibility of the line segment. How?

#define bits(x,y) ((x<xmin) | (x>xmax)<<l| (y<ymin)<<2| (y»ymax)<<3)

bl=bits(xl,yl) ; b2=bits(x2,y2); - L 010
if (bl==0 && b2==0) { LUOL) 2ubE e
/* both end points inside

trivial accept * [o ~ o
} else if (bl & b2) { 0001 [oBob) Ould
/* line is completely outside

ignore it *f 0101 0100 1110
} else {

/* needs further calculation®*/

}

bl OR b2 = 0 iff both end points inside clipping window. Accept

bl AND b2 = 0 iff line end points are in the same half-space
defined by an edge of the clipping window. Reject

Else subdivide the line into two segments at the point where it

crosses a clipping rectangle edge. Reject segment(s) outside the
clipping edge

-

#define bits(x,y) ({(x<xmin) | (x>xmax)<<l| (y<ymin)<<2Z| (y>ymax)<<3)

bl=bits(xl,yl) ; bZ=bits(x2,y2);

if (bl==0 && b2==0) | 1001 1000 1010
/* both end points inside

trivial accept * /
} else if (b1l & b2) { oool 0000 0010
/* line is completely outside

ignore it *f 0101 0100 0110
} else {

/* needs further calculation*/

}

Process clipping boundaries in order and clip a section of

the line during the process

Use the bits calculated before for crossing tests (if one
end is 1 and the other is 0 then the line crosses the

boundary)

Use slope-intercept line representation for intersection

The Cohen-Sutherland algorithm

Clip__——*
rectangle

Consider line AD (above). Point A has outcode 0000 and point D has
outcode 1001. The line AD cannot be trivially accepted or rejected. D is
chosen as the outside point. Its outcode shows that the line cuts the top
and left edges (The bits for these edges are different in the two outcodes).
Let the order in which the algorithm tests edges be top-to-bottom, left-to-
right. The top edge is tested first, and line AD is split into lines DB and BA.
Line BAis trivially accepted (both A and B have outcodes of 0000). Line DB

IS in the outside halfspace of the top edge, and gets rejected.

Cohen-Sutherland Algorithm

= {.}’2 _.}Ilﬁ}
l[;xfj —x)
repeat for border = {LEFT, RIGHT, BOTTOM, TOP}
if ~{birslx, y, Jv bits {Iz, v,))

Baoth inside, accept line and terminate
elseif bits(x, y,) Abits(x, v,)

Both outside same region, reject line and terminate
if border = LEFT v border = RIGHT

v_o=y +mix,, . — X },IP =X

v p dordar barder
else
- — e |[.1!ﬁl|.'.li'r.[ﬁ'i" B .}?l } . — s
X, =Xt . Vo = Yeorder
if bordertest|x, y,) h
X =X,00 =Y, update line

elseif E:r::urder!eﬂ'lixl Vs } . endpoint
Xy =X, Y, =Y '} coordinates

o 0

Example

bits(0,0)=0101 birs(8,5)=0010
bits(0,0) A bits(8,5)= 0000
(5-0) 5
Hl — = —
(8—0) 8
5 5
LEFT =y, +=(1-0)==
Ye =N B() 2
LEFT(P)— P'=(1.5/8)
5 5 5 35
RIGHT: y =y +=(7-1)==+=6=""
Yo 3() 8 & 8

RIGHT(P,)— P,'=(7.35/8)
<)
BOTTOM : x, —1+\z—1F=1+E_ _16
85 5 5

BOTTOM(R')— B"'=(16/5,2)

TOP : B inside, B, " inside, so terminate

L=(16/52)t0(7,35/8)

Cohen-Sutherland Line Clipping

* Fixed order testing and clipping cause needless
clipping (external intersections)

Clip
rectangle

Extra clipping here

Cohen-Sutherland Line Clipping

« This algorithm can be very efficient if it can accept
and reject primitives trivially

— If clip window is large wrt scene data
* Most primitives are accepted trivially

— If clip window is much smaller than scene data
» Most primitives are rejected trivially

« Good for hardware implementation

Liang-Barsky Line Clipping

Clipping: Overview of Steps

Express line segments in parametric form
Derive equations for testing if a point is inside the window

Compute new parameter values for visible portion of line segment, if
any
Display visible portion of line segment

The relative speed improvement over Sutherland-Cohen algorithm is
as follows:

36% for 2D lines
40% for 3D lines
70% for 4D lines

Liang-Barsky Clipping

Parametric clipping - view line in parametric form and
reason about the parameter values

More efficient, as not computing the coordinate values at
Irrelevant vertices

Clipping conditions on parameter: Line is inside clip
region for values of t such that:

Xo SXAIAXSX . AX=X, =X

min

Yrin S ¥i "'tAy < Y mex Ay =Y, Y

Liang-Barsky (2)

* Infinite line intersects clip region edges when:

Oy
t =
‘ Py

where

O O O O

1

N

w

SN

—AX
AX
_Ay
Ay

OO O o o

1 = X1 = Xpin
2 = Kmax — Xy
3 = Y1~ Yimin
4= Ymax — Y1

Liang-Barsky (3)

When p,<0, as t increases line goes from
outside to inside - enter

When p, >0, line goes from inside to outside -
leave

When p, =0, line is parallel to an edge (clipping
IS easy)

If there Is a segment of the line inside the clip
region, sequence of infinite line intersections
must go: enter, enter, leave, leave

Enter

Liang-Barsky (4)

y/v

Enter

Leave

\

eave
a

4

Enter /

“SEnter

Liang-Barsky - Algorithm

Compute entering t values, which are q,/p, for each
P<0

Compute leaving t values, which are q,/p, for each
P>0

Parameter value for small t end of line is:t,, ;=
max(0, entering t's)

parameter value for large t end of line is: t,,,,e=min(1,
leaving t's)

If tsma<tiarger there is a line segment - compute
endpoints by substituting t values

Nicholl-Lee-Nicholl Line Clipping

« Creates more testing regions around the clipping
window
— Avoids multiple line-intersection calculations

* |nitial testing to determine if a line segment is
completely inside the clipping window can be
done using previous methods

* If trivial acceptance or rejection is not possible
the NLN algorithm sets up additional regions

®Po

For line with endpoints PoPend, there are three different
positions to consider - all others can be derived from
these by symmetry considerations

For each case, we generate specialized test regions for
other endpoint Pend, which use simple tests (slope, >, <),
and tells us which edges to clip against.

Case 1

Find which of the four
regions Pend lies in,
then calculate the line
Intersection with the
corresponding
boundary

Case 2

LT

% L LR
L

LB

Find which of the four regions Pend lies in, then
calculate the line intersection with the corresponding
boundary

PON

Case 3 : 2 possibilities

TR

LB

k
AN

g

L

T
T

TR

\TB
B

Find which of the five regions Pend lies in, then

calculate the line intersection with the corresponding

boundary

N-L-N Line clipping

« To determine in which
region Pend lies we LT
compare the slope of
PendPo to the slopes of

the boundaries of the % L LR
NLN regions

LB

Number of cases explodes in 3D, making
algorithm unsuitable

Polygon clipping

« Clipping a polygon fill area needs more than
line-clipping of the polygon edges
— would produce and unconnected set of lines

« Must generate one or more closed polylines,

which can be filled with the assigned colour or
pattern

V.

Polygon Clipping

. Find the vertices of the
new polygon(s) inside the
window.

. Sutherland-Hodgeman
Polygon Clipping:
Check each edge of the polygon
against all window boundaries.
Modify the vertices based on
transitions. Transfer the new
edges to the next clipping
boundary.

Original Clip Clip Clip
Polygon Right Bottom Top
Figure 6-23

Processing a polygon fill area against successive clipping-window boundaries.

Sutherland-Hodgeman Polygon Clipping

. Traverse edges for borders; 4 cases: V1

V1 outside, V2 inside: take V1' and V2

V1 inside, V2 inside: take V1 and V2

V1 inside, V2 outside: take V1 and V2'

V1 outside, V2 outside: take none

~_

V1
V2

V1

Vi

V2

Left border:
vl v2 both inside
v2 v3 both inside

vi,v2,v3,v4v5,ve,vl

Bottom Border:

vl v2 both inside
v2 V3 Vv2i, V30
v3 v4 both outside
v4 v5 both outside
vbve v5o0,vei
v6 vl both inside
vi,v2,v3',v5',ve,vl

vl v2
v2 v3'
none
none
v5' v6
v vl

v5'

v3

vi,v2,v3',v5',v6e,vl

Right border:

vl v2 vii, v2 o vl v2'
v2 v3' v2 o, v3'i v2" v3'
v3' v5' both inside v3'v5E'
v5' v6 both inside v5' vé
v6 vl both inside v6 v1
vi,v2',v2",v3',v5',v6,vl

Top Border:

vl v2' both outside none
v2'v2" v2' o, v2" i w2 v2"
v2" v3' both inside v2" v3'
v3'v5' both inside wv3'v5'
v5' v6 both inside v5'v6
vevl v6i,vlio ve v1'
v2'"',v2" v3',v5',v6,vl'

v3

'||H|"1 vz”l
/ 9
Ve
:} (N
V2
v5 &

v3

1

|

|

|

|

|

|

|

1

|

|

|

~<|

|

|

|

u—-<‘

o

|

|

- |

i |

|

|

|
-~

1

|

I

|

|

|

I

|

| | | | I | |
: | } | Vet : - |
| | | | 1 | | I
| | | | | I | |
| | | | | | | |
1 | | | 1 | | I
2 v,
bW I i o N |
(1) (2) (3) (4)
Out =3 in N = in in = out out = out
Output: V|, V, Output: V, Output: V| Output: none
Figure 6-26

The four possible outputs generated by the left clipper, depending on the position
of a pair of endpoints relative to the left boundary of the clipping window.

Sutherland-Hodgman Polygon Clipping
* The algorithm correctly clips convex polygons,

but may display extraneous lines for concave
polygons

" AA

Other Issues in Clipping

. Problem in Sutherland-Hodges.))
Weiler-Atherton has a solution Y// w
. Clipping other shapes:

Circle, Ellipse, Curves.

.............
wawawawawawa

S
. Clipping a shape against anothe ’
shape

. Clipping the exteriors.

Weiler-Atherton Polygon Clipping

Another approach to polygon clipping
No extra clipping outside window
Works for arbitrary shapes

Avoids degenerate polygons

Outline of Weiler algorithm:
— Replace crossing points with vertices
— Form linked lists of edges
— Change links at vertices
— Enumerate polygon patches

Weiler-Atherton Clipping
clockwise orientation of subject polygon

13

114

|

12 Y
Clip
/ Polygon (ep)
Subject Polygon] 10

(sp) —

Gives “Right” Answer

T

Weller-Atherton Clipping
(clockwise orientation of polygon)

Start at first (inside) vertex

Traverse polygon until hitting a window
boundary

Output intersection point |

Turn right

Follow window boundary until next
Intersection

Weller-Atherton Clipping

Output second intersection

Turn right, again, and follow subject polygon
until closed

Continue on subject polygon from first
Intersection point.

Repeat processing until complete

Generalizations of W-A

« Can be extended to complex situations, arbitrary
windows

« Stablility issues can arise for such cases

Weiler-Atherton Polygon Clipping
counter-clockwise orientation of subject polygon

(b)

Figure 6-29

A concave polygon (a), defined with the vertex list {1, 2, 3,4, 5,6 },
is clipped using the Weiler-Atherton algorithm to generate the two
lists {1, 17,17,1”} and {4°,5,5"}, which represent the separate polygon
fill areas shown in (b).

Weiler-Atherton Polygon Clipping
counter-clockwise orientation of subject polygon

« For an outside-to-inside pair of vertices, follow the
polygon boundary

* For an inside-to-outside pair of vertices, follow the
window boundary in a counter-clockwise direction

Weiler-Atherton Polygon Clipping

* Polygon clipping using nonrectangular polygon
clip windows

Polygon
Fill Area

Clipping ~ .

Window > \
Clipped

Fill Area

Figure 6-30

Clipping a polygon fill area against a concave-polygon
clipping window using the Weiler- Atherton algorithm.

Text Clipping

All-or-none text clipping
— Using boundary box for the entire text
All-or-non character clipping

— Using boundary box for each individual character
« Character clipping

— Vector font: Clip boundary polygons or curves
— Bitmap font: Clip individual pixels

ISTRING 1!
STRING 1) T—
a$&‘ ¥ \C"\/
iy ¥ o
| zaeoreber STRING 3 Rt
STRING 4
Before Clipping
Before Clipping Before Clipping
i PTRING 1
&%
l A
TRING 3 =
STRING 2 STRING 4
After Clipping After Clipping After Clipping

